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ARTICLEINFO ABSTRACT

Article history: Although metformin has become a drug of choice for the treatment of type 2 diabetes mellitus,
Received 24 June 2015 some patients may not receive it owing to the risk of lactic acidosis. Metformin, along with other
Accepted 5 October 2015 drugs in the biguanide class, increases plasma lactate levels in a plasma concentration-dependent

manner by inhibiting mitochondrial respiration predominantly in the liver. Elevated plasma
metformin concentrations (as occur in individuals with renal impairment) and a secondary event

Keywords: or condition that further disrupts lactate production or clearance (e.g, cirrhosis, sepsis, or
Metformin hypoperfusion), are typically necessary to cause metformin-associated lactic acidosis (MALA). As
Drug mechanism these secondary events may be unpredictable and the mortality rate for MALA approaches 50%,
Lactic acidosis metformin has been contraindicated in moderate and severe renal impairment since its FDA
MALA approval in patients with normal renal function or mild renal insufficiency to minimize the
Renal impairment potential for toxic metformin levels and MALA. However, the reported incidence of lactic acidosis

in clinical practice has proved to be very low (<10 cases per 100,000 patient-years). Several groups
have suggested that current renal function cutoffs for metformin are too conservative, thus
depriving a substantial number of type 2 diabetes patients from the potential benefit of metformin
therapy. On the other hand, the success of metformin as the first-line diabetes therapy may be a
direct consequence of conservative labeling, the absence of which could have led to excess patient
risk and eventual withdrawal from the market, as happened with earlier biguanide therapies. An
investigational delayed-release metformin currently under development could potentially
provide a treatment option for patients with renal impairment pending the results of future
studies. This literature-based review provides an update on the impact of renal function and other
conditions on metformin plasma levels and the risk of MALA in patients with type 2 diabetes.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-
ND license (http:/creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction first line therapy for newly diagnosed type 2 diabetes by many

professional diabetes organizations [1]. With approximately
Metformin is the most commonly prescribed oral 50 years of accumulated real-world global clinical experience,
antihyperglycemic medication in the world and is considered metformin is generally regarded as safe with the most
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frequent adverse effects being gastrointestinal in nature:
diarrhea, nausea, and to a lesser extent, vomiting [2-4]. In
particular, metformin is less well tolerated in patients with
preexisting gastrointestinal conditions [5].

Metformin is contraindicated in patients with renal or
hepatic insufficiency, in very elderly patients, and in patients
with conditions of circulatory dysfunction such as congestive
heart failure, due to increased risk of lactic acidosis [6]. Though
metformin-associated lactic acidosis (MALA) is an extremely
rare condition (most estimates are <10 events per 100,000
patient-years of exposure), cases continue to be reported and
are associated with mortality rates of 30 to 50% [6-12].

At the time of initial US approval, the safety review and
risk management of the New Drug Application (NDA) for
metformin (Glucophage®) focused on the fact that MALA can
be precipitated by drug accumulation, most notably in
patients with chronic or newly acquired renal insufficiency
or failure, complicated by lactate overproduction (from
hypoxic tissues in respiratory and circulatory failure) and/or
impaired lactate removal (in liver damage, which inhibits
gluconeogenesis). Current metformin product labeling there-
fore includes warnings regarding lactic acidosis [6].

2. Biguanides and Lactic Acidosis

The biguanides, metformin, phenformin, and buformin, com-
prise a class of glucose-lowering drugs developed in the 1950s
for the treatment of type 2 diabetes, although only metformin is
approved for use today in most countries. Phenformin was
approved in the US and Europe in the 1950s, while metformin
and buformin were only approved in Europe at that time. By the
end of the 1970s, evidence of an increased risk of lactic acidosis
with phenformin use led to its withdrawal in most countries [3].
Although less widely used, buformin has largely been with-
drawn from the market for the same reason.

The strong association of lactic acidosis with phenformin
use resulted in a reluctance on the part of pharmaceutical
companies to pursue regulatory approval for metformin in
the US until the Glucophage NDA submission to the Food and
Drug Administration (FDA) by Lipha Pharmaceuticals culmi-
nated in approval of the drug in 1995. Glucophage was
subsequently marketed by Bristol-Myers Squibb [13].

In contrast to phenformin, which exhibits a well-defined
hyperlactatemic effect, therapeutic doses of metformin used
according to the current label cause little (usually less than
1-2 mmol/L) to no increase in basal and postprandial blood
lactate levels [3,14,15]. The incidence of lactic acidosis with
metformin is estimated to be 20 times less than with
phenformin [16]. Preclinical studies also indicate that increased
plasma lactate concentrations and lactic acidosis are related to
biguanide dose and plasma levels, with phenformin being the
most potent, followed by buformin, and metformin [7,17].

3. Metformin Pharmacokinetics and Metabolism

When metformin is administered orally, approximately 40%
of the dose is absorbed in the upper small intestine

(duodenum and proximal jejunum) and only ~10% is
absorbed in the ileum and colon. Unabsorbed drug accumu-
lates in the mucosa of the bowel [18] and is ultimately
eliminated in the feces [19]. Current metformin formulations
have a bioavailability of ~50%-60%; metformin circulates in
the plasma unbound and is eliminated unchanged by the
kidneys [3,19]. When metformin accumulates in the plasma to
concentrations > 5 mg/L, elimination may be prolonged [20].

4, Risk Factors for MALA

Owing to the multiple and often nonspecific signs and
symptoms of MALA, as well as the potential impact of other
conditions and medications that can predispose a patient to
lactic acidosis, MALA can be difficult to predict or diagnose
[21-23]. This is true especially in the absence of knowing the
circulating metformin concentration in a patient presenting
with symptoms [24]. However, it is known that MALA occurs
when there is an imbalance between increased lactate
production and impaired metabolism/reduced clearance.
Metformin plasma levels >5pug/mL are generally found
when metformin is implicated as the cause of lactic acidosis
[6]. Such sustained very high elevations in plasma metformin
concentrations (therapeutic range <2 pg/mL [19]) usually are
observed in individuals with poor renal function (i.e., reduced
metformin clearance), impaired hepatic metabolism (i.e.,
reduced lactate clearance) [25,26], and/or in the presence of
increased production (i.e., sepsis, CHF, reduced tissue perfu-
sion, or anoxia). Although not contraindicated for metformin
use in either the US or other countries, other conditions that
may increase the risk of lactic acidosis include severe
dehydration, shock, alcohol use, hypoxic states, sepsis, and
advanced age (because of age-related decline in renal function
and increased risk for acute renal failure and other cata-
strophic medical conditions) [6,8,27-29]. However, MALA can
occur in patients with even mild renal dysfunction [30] and
patient outcome seems to be correlated with severity of the
underlying disease, highlighting the need for judicious use of
metformin even in otherwise lower-risk patients.

MALA is more likely to occur in patients who acutely
develop renal impairment from dehydration, vomiting or
diarrhea, surgery, etc., especially in elderly subjects who have
a reduced glomerular filtration rate [31-38]. Dehydration can
cause acute renal failure and reduce metformin clearance,
resulting in increased plasma metformin levels, especially if
metformin administration is continued [27]. The effect of
metformin on plasma lactate concentrations in bariatric
surgery patients has not been examined, but these individ-
uals may be at higher risk for MALA due to increased
metformin absorption and bioavailability [39].

Metformin plasma concentrations are approximately 2-4
fold higher in patients with type 2 diabetes and moderate to
severe renal impairment (i.e., eGFR of 30 to <60 mL/min/
1.73 m? or <30 mL/min/1.73 m?, respectively) compared to
healthy subjects [6,29]. Patients with type 2 diabetes are also
at greater risk for hyperlactatemia, which is attributed to
alterations in the redox potential [40]. As a consequence,
patients with diabetes, especially those treated with
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metformin, have a reduced threshold for the development of
lactic acidosis in response to a secondary event [19,25,26,41].
This scenario is consistent with individual patient case
reports [42,43]. While some publications report a lack of
association between plasma metformin concentrations and
prognosis in MALA [44-46] and metformin levels in patients
with MALA [45], these findings likely reflect the multiple
different clinical conditions associated with lactic acidosis
and varying degree of certainty in the timing of collection of
key data such as plasma lactate and metformin concentra-
tions proximal to the event [47].

Renal dialysis to remove metformin (and correct metabolic
acidosis) has been recommended to treat MALA [34,35,48,49],
arguing in favor of a relationship between elevated plasma
metformin and increased plasma lactate levels. Although
individuals can develop lactic acidosis for other reasons, in
the case of MALA, metformin exposure appears to be the
main risk factor. This is consistent with the observation in
several publications [46,50,51] that patients with lactic acido-
sis who are taking metformin often have better outcomes
than those who are not, suggesting that less severe secondary
events may be sufficient to result in lactic acidosis in the
presence of metformin. One possibility is that metformin
limits a patient’s capacity to accommodate further increases
in lactate induced by such secondary intercurrent events that
ultimately trigger an event of MALA.

4.1. History of Metformin Labeling Regarding Patients
with Impaired Renal Function

The specific criteria put forth in metformin labeling (serum
creatinine levels >1.5 mg/dL [males], >1.4 mg/dL [females] or
abnormal creatinine clearance) to contraindicate metformin
use correspond roughly to an estimated glomerular filtration
rate (eGFR) of <60 mL/min/1.73 m? [6]. A creatinine clearance
of 60 mL/min/1.73 m? is at the threshold of meeting the
National Kidney Foundation’s definition of chronic kidney
disease, stated as “either kidney damage or GFR < 60 mL/min/
1.73 m? for 3 months.” This level falls between Stage 2 (kidney
damage with mild decreased GFR) and Stage 3 (moderate
decreased GFR). The specified serum creatinine levels in the
metformin label reflect a then practical butimprecise estimate
of GFR because calculation of GFR from serum creatinine
levels by the Cockcroft-Gault, MDRD equation and similar
approaches is highly dependent on age, sex, and body weight
[52]. As an illustration from the National Kidney Foundation
(Frequently Asked Questions about GFR Estimates), a serum
creatinine of 1.2 mg/dL in a 22-year-old Black man, a 58-year-
old white man, and an 80-year-old white woman result in
calculated GFRs of 98, 66, and 46 mL/min/1.73 m?, respective-
ly. These values correspond to renal function categories of
Stage 1, 2, and 3, respectively for those individuals.

Although not documented in detail in the FDA’s Summary
Basis of Approval for Glucophage, the appropriateness of
these criteria was the subject of considerable discussion by
both internal Agency staff and outside subject matter experts.
Because of the concern about potential for MALA and the
dependence on renal function for drug elimination, reviewers
concluded that a conservative approach was warranted for
metformin use in patients with renal insufficiency. Reviewers

decided that any degree of renal insufficiency as reflected by
the very rough proxy of serum creatinine should be contra-
indicated. The commonly listed upper limits of normal serum
creatinine levels for men and women were used to define the
contraindication with the understanding that these creati-
nine levels in some patients could reflect more than border-
line renal dysfunction.

The contraindication thresholds limit metformin use to
patients who could be treated without having metformin
plasma concentrations significantly exceed the ‘typical’
therapeutic range of <2 pg/mL [19] and never reach or exceed
5 ug/mL, a concentration that has been associated with
MALA. The FDA also encouraged the sponsor of the
Glucophage NDA to continue to evaluate the effect of renal
insufficiency and age on metformin clearance [53]. This led to
subsequent efforts by FDA to identify other conditions
associated with increased MALA risk such as congestive
heart failure [9,54]. Labeling also includes recommendations
that patients temporarily discontinue metformin before
receiving radiocontrast medium, which can cause acute
renal failure [6,55]. Additionally, patients with type 2 diabetes
who have microvascular complications, especially diabetic
nephropathy, are at increased risk for acute renal failure
following administration of radiocontrast medium [4].

4.2. Metformin Use in Contraindicated Populations

Many individuals with diabetes continue to receive metfor-
min, despite having conditions that place them at risk for
lactic acidosis [56,57]. According to some estimates, approx-
imately 25% of patients taking metformin have one or more
contraindications [58,59].

For example, despite the contraindication for metformin use
in diabetic patients with moderate to severe renal impairment
(eGFR <60 mL/min/1.73 m?), metformin is often used off-label
in patients with moderate renal impairment [60].

Some health authorities, e.g., the National Institute for
Health and Clinical Excellence (NICE) recommend initiation of
metformin in patients with eGFR 45 to <60 mL/min/1.73 m?
and continuation with additional caution and dose reduction
if the eGFR decreases to 30 to <45 mlL/min/1.73 m?) [61].
Similar treatment guidelines are endorsed by the Canadian
Diabetes Association and the Australian Diabetes Society [62]
and the results of numerous studies support this measured
approach to the use of metformin in patients with moderate
renal impairment [63,64]. At the same time, recent safety
alerts by some health authorities continue to highlight a more
restricted use of metformin to minimize the risk of MALA
[65,66]. Similarly, recent publications [67-69] continue to
highlight the increased risk of MALA with metformin use in
renally-impaired patients. While it has been suggested that
using lower doses of metformin (eg, 500 to 1000 mg/day) could
be safe even in patients with severe renal impairment [70], it
is questionable whether such doses would provide meaning-
ful glycemic control [71]. Recently, the US FDA has been in
receipt of Citizen Petitions to ease the contraindication to
allow use in patients with moderate renal impairment,
similar to the clinical treatment guidelines in place in the
United Kingdom. However, in the absence of controlled
clinical trial data to support such a change it is unclear how
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it could be justified, especially in light of continuing concern
in the medical and health authority communities.

5. Incidence of MALA

MALA is an extremely rare event with an estimated incidence
of 0.03 to 0.06 per 1000 patient-years [3,11]. However, the
precise incidence of lactic acidosis in metformin users is not
known, as event rates are very low and are based on
spontaneous case reports. Decades of clinical experience
have provided insight to clinicians and regulators about the
optimal use of metformin to insure safety. Two years after
metformin was introduced into the US market, the incidence
of MALA was estimated at 5 cases per 100,000 patient-years
based on 47 reported cases among an estimated 1 million
users [9]. Similarly, MALA has been reported at a rate of 9 per
100,000 patient-years in Canada [72]. Other reports indicate a
comparably low incidence of MALA, but all are consistent in
that most cases occurred in patients with pre-disposing
conditions or intercurrent precipitating events that predis-
pose to lactic acidosis [3,8,9,27,28,72]. Cases of lactic acidosis
with “normal” metformin levels have been reported in
patients with [33,49,73-83] and without a history of diabetes
[73,80,81,84-86].

A comparative outcomes study that examined patients
with type 2 diabetes treated with metformin vs. patients
treated with non-metformin antihyperglycemic therapies for
1 year reported no cases of lactic acidosis [87]. Analyses of two
large clinical studies with metformin showed similar results
[88,89]. A systematic review from the Cochrane library that
included 347 comparative trials and cohort studies found no
cases of fatal or non-fatal lactic acidosis and no difference in
plasma lactate levels between metformin-treated and non-
metformin-treated groups [88]. Another case—control analysis
[89], which compared the incidence of lactic acidosis between
metformin and sulfonylurea users in 50,048 patients, found
no difference in the incidence of lactic acidosis between
metformin and sulfonylurea (3.3 and 4.8 per 100,000 patient-
years, respectively). All reports of lactic acidosis in this study
occurred in patients with preexisting comorbidities. Some
investigators have attributed the association between met-
formin and lactic acidosis to the fact that type 2 diabetes is
itself a risk factor for lactic acidosis [44,88], although this
likely reflects the accompanying deterioration in other organ
systems (e.g., hepatic and renal) that in turn predisposes
patients to a higher risk of MALA.

Estimates of the incidence of MALA are confounded by
multiple factors. Data obtained from published trials, which
typically exclude patients with risk factors for lactic acidosis
and which are designed to provide standard of care, likely do
not reflect actual rates in clinical practice [56,90]. Case-
controlled studies reflect use of metformin as indicated on
the label, thus excluding, in most cases, patients at higher risk
of MALA. Furthermore, information on plasma metformin
concentrations, serum creatinine levels, arterial lactate levels,
and history of concurrent pathologies is inconsistently
reported, complicating characterization of MALA vs. lactic
acidosis of other etiologies [31].
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Fig. 1 - Biochemistry of lactate production. Pyruvate, the only
precursor to lactate, is produced in the cytoplasm from
metabolism of glucose via glycolysis. (1) When oxygen is
available, pyruvate enters the mitochondria and is oxidized
to CO, and H,0 in the TCA cycle. (2) Under anaerobic
conditions, pyruvate is unable to enter the mitochondria to
be oxidized and is reduced to lactate. (3) In the liver and
kidney, pyruvate also can be converted to glucose. The Cori
cycle describes a process by which lactate is produced by one
tissue (muscle) and converted back to glucose in another
tissue (liver). Lactate accumulates under anaerobic condi-
tions. Adapted from Fall & Szerlip, 2005 [91].

6. Mechanism of MALA

Irrespective of its underlying etiology, lactic acidosis is a life
threatening condition characterized by low blood pH (<7.35)
and elevated arterial lactate (>5.0 mmol/L) levels [91]. Lactate
is produced by the gut, liver, and peripheral tissues
during glycolysis and can accumulate during hypoxic condi-
tions (Fig. 1) [91]. The liver, kidney, heart, and skeletal muscle
are the primary lactate metabolizers, while the liver and
kidney account for ~60% and ~30%, respectively, of lactate
clearance [92,93], although lactate clearance by the kidney
does not correlate with renal function [94]. Lactate can either
be oxidized to carbon dioxide and water by mitochondria to
generate energy or converted back to glucose (gluconeogen-
esis) in the liver and kidney [17]. Lactic acidosis occurs during
conditions of excessive lactate production and/or impaired
hepatic lactate removal [91,92]. Hepatic lactate clearance can
reach 320 mmol/h, which far exceeds the normal rate of
lactate production [91]. Therefore, increased peripheral lac-
tate production alone is rarely responsible for lactic acidosis.
However, increased lactate production in the presence of
impaired hepatic metabolism, such as occurs with cirrhosis,
sepsis, or hypoperfusion, can result in sustained lactate
accumulation and clinically significant lactic acidosis.

Lactic acidosis has been divided into two categories. Type
A lactic acidosis results from the accumulation of lactate via
glycolysis in the absence of oxygen. Type B lactic acidosis,
exemplified by MALA, occurs during conditions when lactate
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Fig. 2 - Relationship between blood lactic acid exposure (AUC)
and plasma metformin concentration in normoglycemic rats.
Rats received vehicle or metformin doses via the stomach,
via the ileum and via a peripheral vein in randomized
sequence. Blood glucose and lactic acid concentrations were
determined before metformin administration (0 min) and at
time points up to 4 h after administration. Plasma metformin
concentration was measured at the 4-h time point.

production is increased at a time when clearance of lactic acid
by oxidation or gluconeogenesis is reduced [91]. The remain-
der of this review will focus on MALA rather than the general
topic of lactic acidosis.

In animals [95] and humans [96,97], biguanide administra-
tion is associated with an increase in blood lactate levels. The
increase in plasma lactate concentration with therapeutic
doses of metformin is small, usually <2 mmol/L [3,14,15,98,99],
although higher levels may occur [100]. Metformin also elevates
plasma lactate levels during exercise [101,102]. The small
magnitude of increase in plasma lactate with metformin
under typical conditions most likely explains why elevated
plasma lactate levels have not been observed in some studies
[13,103].

One mechanism via which metformin increases plasma
lactate levels relates to the inhibition of mitochondrial
respiration in tissues (i.e., liver and muscle) responsible for
lactate removal [17,26,104-107]. This results in both acceler-
ated lactate production and reduced lactate metabolism. In

isolated hepatocytes, metformin inhibits complex 1 of the
mitochondrial respiratory chain in a concentration-
dependent manner and impairs gluconeogenesis [17,26,107].
The increase in plasma lactate concentration observed with
metformin exposure in vivo correlates with the inhibition of
mitochondrial oxidative phosphorylation in vitro [17].

6.1. Evidence from Metformin Overdose Cases

Reported cases of metformin overdose provide insight about
the mechanisms linking metformin accumulation, increased
plasma lactate levels, and the development of lactic acidosis. A
retrospective analysis of metformin overdose cases [50] dem-
onstrated a strong correlation between increased circulating
metformin concentrations (as would be expected to occur in
subjects with renal impairment receiving effective doses of
current metformin formulations) and decreased arterial pH.
High plasma lactate concentrations and pH were both predic-
tors of fatal outcomes; patients who died had 100% higher
circulating plasma metformin levels, 30% higher plasma lactate
concentrations, and lower arterial pH compared to those who
survived. In addition, individual overdose case studies indicate
that metformin alone, in the absence of an intercurrent
precipitating event, can cause MALA in instances of a major
overdose, even in healthy individuals [108].

7. Relationship Between Metformin and
Increased Lactate: Results of Novel Studies

We performed both nonclinical and clinical studies to better
understand the relationship between systemic metformin
exposure and increased plasma lactate concentrations.

7.1. Results of Preclinical Studies

In a nonclinical study [109], normoglycemic rats were
administered vehicle or metformin by infusion through
chronic indwelling catheters implanted into the stomach
(intragastric), into the ileum (intra-ileum), or into a peripheral
vein (intravenous) (Fig. 2).

Plasma metformin concentrations following intra-ileum
administration were very low (<10 pg/mL) compared to
intravenous administration, which resulted in plasma levels
that were up to 10 times higher. The increase in plasma
metformin levels with intragastric administration was inter-
mediate between intra-ileum and intravenous metformin
administration. The increase in blood lactate concentration
following metformin administration varied as a function of (i)
metformin dose, (ii) circulating metformin concentration, and
(iii) route of administration. While the lowest metformin dose
tested (300 mg/kg) did not produce a significant increase in
lactate AUC for the intragastric and intra-ileum routes of
administration, it did result in a significant increase following
intravenous administration.

Intravenous and intragastric administration of metformin
produced statistically significant increases in lactate AUC at
the higher metformin doses tested (500 and 750 mg/kg), but
intra-ileum administration did not produce an increase in
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lactate AUC relative to vehicle at either dose. Importantly,
while it has previously been shown that metformin increases
lactate concentration in the intestine [18], administration of
metformin directly into the ileum did not produce an increase
in blood lactate concentration even at very high doses. In
contrast, with both intravenous and intragastric administra-
tion, the blood lactate concentration increased significantly
and the rise was strongly correlated with the increase in
plasma metformin concentration. There was no relationship
between the plasma metformin concentration and blood
lactate level following ileum infusion, most likely because
that route of administration produced very low plasma
metformin concentrations.

7.2 Results of Clinical Studies

We examined the relationship between metformin exposure
and lactate production across the spectrum of renal function
ranging from normal to severely impaired in patients with type 2
diabetes [110]. In this study, we used an investigational delayed-
release metformin formulation (Metformin DR) designed to
release metformin in the distal small intestine, thereby
restricting metformin exposure to the distal bowel where it
activates L cells resulting in the release of hormones such as
glucagon-like peptide-1 (GLP-1) and peptide YY [111]. This
formulation differs from currently available IR and XR metfor-
min products that are absorbed mainly in the proximal small
intestine, resulting in high plasma metformin levels (Table 1).
We have demonstrated that Metformin DR retains the full
glucose lowering capacity of currently available metformin
preparations [112].

Results from this study showed that, although plasma
metformin concentrations increased with decreasing renal
function, the metformin plasma AUC was significantly re-
duced (by ~25%-50%) after administration of a single 1000 mg
dose of Metformin DR compared to a 1000 mg dose of
Metformin XR (Fig. 3). In addition, Metformin XR, administered
as a single 1000 mg dose, resulted in a significant relationship
between the plasma metformin concentration and the change
in placebo-corrected plasma lactate concentration from base-
line (p <0.0001) (Fig. 4). No relationship between plasma
metformin and plasma lactate levels was observed when
metformin was administered to the distal small intestine with
Metformin DR (p = 0.94), most likely because metformin
plasma concentrations were not high enough.

It should be noted that the change in plasma lactate
concentration with Metformin XR was relatively small,
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Fig. 3 - Plasma metformin concentrations following a single
dose of metformin DR and metformin XR in patients with type
2 diabetes and severe renal impairment. Patients with severe
renal impairment (eGFR < 30 mL/min per 1.73 m?) were
administered single doses of 1000 mg Metformin DR,

1000 mg Metformin XR, and Placebo in a cross-over study
design. Top panel: Time-course plasma metformin concen-
tration after a single administration of Metformin DR or
Metformin XR. Bottom panel: Reduction in metformin
bioavailability (Cpax and AUC) with Metformin DR relative to
the same dose of Metformin XR.

consistent with the low dose used and the lack of opportunity
for metformin accumulation due to the single dose adminis-
tration. However, based on the observed relationship between
plasma metformin and lactate concentrations, repeated
Metformin XR dosing in patients with renal impairment
could result in metformin concentrations that cause a
clinically significant increase in circulating plasma lactate
levels. The results of this study are consistent with those in
rats discussed earlier.

Table 1 - Characteristics of the Metformin Delayed-Release (Metformin DR) formulation.

Status

Delivery Target
Systemic Exposure
Glucose Lowering Effect

Lower Bowel (Ileum)

Investigational new drug in development

~50% lower than metformin immediate- or extended-release at equivalent doses
Using ~50% lower dose, appears to be comparable to metformin immediate- or extended-release based on

Phase 2 clinical trials. Needs to be confirmed in Phase 3 trials.

Gastrointestinal Tolerability To be determined
Utility in Treating Patients with To be determined
Renal Impairment
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Fig. 4 - Plasma lactate concentration during a single-dose
metformin administration in patients with type 2 diabetes.
Patients with normal or impaired renal function were admin-
istered single doses of 1000 mg Metformin DR, 1000 mg
Metformin XR, and Placebo in a cross-over study design. Top
panel: Placebo-adjusted change in plasma lactate concentra-
tion after a single-dose administration of Metformin DR or
Metformin XR. Time 0 to 24 h post-dose. Study medication
administered at t = 0 h; meals administered at t = -0.33, 5.5,
8.5, 12.5, and 15.5 h. Bottom panel: Placebo-adjusted change
in plasma lactate and metformin concentrations after a single-
dose of Metformin DR or Metformin XR. Evaluable population.
Time 0 to 24 h post-dose.

7.3. Strengths and Weaknesses of Metformin DR Studies
and Translational Potential

The premise that Metformin DR acts substantially through
activation of the L cell in the lower bowel is supported by the
rodent data and early clinical data. The precise efficacy and
safety profile of Metformin DR relative to existing metformin
formulations remain to be confirmed with further clinical
studies, as does the important potential use in patients with
renal impairment who currently cannot benefit from metformin
owing to the appropriate contraindications currently in place.

8. Conclusions

The fear of MALA and the contraindication for metformin in
renally-impaired patients are rooted in the history of
biguanide-associated lactic acidosis, in particular the experi-
ence with phenformin. While prudence has appropriately

dictated caution in prescribing practices, judicious use of
metformin in moderate renal impairment is common and is
sanctioned by several health authorities, including those in
the United Kingdom, Canada, and Australia. However, the
success of metformin as the first-line diabetes therapy may
be a direct consequence of conservative labeling, the absence
of which could have led to excess patient risk and
withdrawal from the market as was done with earlier
biguanide therapies. Given that excessive plasma metfor-
min accumulation is a necessary predisposing condition for
MALA, alternative methods of delivering metformin to
high-risk diabetic patients that minimize systemic expo-
sure while maintaining glycemic efficacy are desirable.
Limiting exposure by simply administering lower doses is
likely not to provide optimal glycemic control. However,
investigational formulations of metformin that target the
lower bowel [112] potentially could impact the ability to
treat currently contraindicated (e.g., renally impaired) or
otherwise metformin-intolerant patients who could benefit
from this biguanide.
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Fig. 2 - Relationship between blood lactate exposure (AUC)
and plasma metformin concentration in normoglycemic rats.
Rats received vehicle or metformin doses via the stomach,
via the ileum and via a peripheral vein in randomized
sequence. Blood lactate concentrations were determined
before metformin administration (0 min) and at time points
up to 4 h after administration. Plasma metformin
concentration was measured at the 4-h time point.
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